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Foreword

The 15th International Workshop on Neural Coding is held 27 February to 4 March 2023 at the historic 
beach town of Piriápolis, Uruguay. Since 1995, this biennial event provides for multidisciplinary efforts
of neurophysiologists, computer scientists, biophysicists, mathematicians, engineers, cognitive 
neuroscientists and others, bringing them to share their expertise towards outstanding issues in solving 
the neural code. This year we are especially keen to be back as an in-person event! 

The workshop typically consists of single track multi-disciplinary sessions with topical areas that have 
typically covered diverse aspects of brain-computer interfaces, coupled oscillators, information theory, 
network architecture and dynamics, probabilistic models, sensory systems, and spike train analysis. 
Special emphasis is placed on exchange leading to fruitful collaborations between attendees. These 
may be further fostered by social and cultural events integrated into the meeting. Previous meetings 
have been hosted in Prague (1995), Versailles (1997), Osaka (1999), Plymouth (2001), Aulla (2003), 
Marburg (2005), Montevideo (2007), Tainan (2009), Limassol (2010), Prague (2012), Versailles 
(2014), Cologne (2016), Torino (2018), and Seattle (2021, online). Selected presentations have also 
been published in workshop Special Issues over the years. 

This austral summer season is intended for a lively meeting aiming to facilitate discussion across all 
functional levels of the nervous system – from sub-cellular to systems levels and behavior-, and to 
work out important implications for sensory, cognitive, motor, autonomous and control processes.

Piriápolis, February 2023

The NC2023 Team

http://neuralcoding.net/nc2023/abstracts.html#special-issues
https://sites.uw.edu/nc2021/
http://www.neuralcoding2018.unito.it/
https://events.uni-koeln.de/frontend/index.php?folder_id=106
http://nc2012.biomed.cas.cz/
http://www.cs.ucy.ac.cy/nc2010/
http://neuroheuristic.org/neural-coding-2003/
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MONDAY, 27th FEBRUARY

17:30 Registration, Neuroscience in Uruguay 
Casa de la Cultura de Piriápolis

20:00 -Welcome dinner-
Restaurante Meridiano 58

TUESDAY, 28th FEBRUARY
Salón Dorado, Argentino Hotel

Leaky integrate and fire models

09:00 Laura Sacerdote and Giuseppe D'Onofrio
Jacobi processes with jumps as neuronal models - Part 1 1

09:30 Giuseppe D'Onofrio and Laura Sacerdote
Jacobi processes with jumps as neuronal models - Part 2 3

10:00 Cristina Zucca and Laura Sacerdote
Quickest detection in neuronal modelling 5
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11:00 Sabrina Camargo, Daniel Martin, Eyisto Aguilar Trejo, Aylen de Florian, Maciej Nowak, 
Sergio Cannas, Tomás Grigera, and Dante Chialvo
Scale-free correlations in the dynamics of a small (N  10000) cortical network∼ 6

11:30 Antonella Dapino, Federico Davoine and Sebastian Curti
Contribution of the D-type K+ current to the operation of networks of electrically coupled 
neurons 7

12:00 Christine Pedroarena
A slow gain control mechanism 9

13:00 -Lunch at Argentino Hotel-

Associative networks

14:30 Roseli S. Wedemann and Angel Ricardo Plastino
Multidimensional representation of neurons in associative memory networks 10

15:00 Andrés Pomi
Statistical learning of autoassociations of population vectors with overlapping tensor contexts 
provides a natural neural basis for Bayesian computation 12



15:30 Pawel Herman, Rohan Raj, Nikolaos Chrysanthidis, Thomas Hörberg, Robert Lindroos, Anders 
Lansner and Jonas Olofsson
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Poster session  (posters placed 28/Feb through 2/Mar)

09:00 Petr Marsalek
Neural encoding of sound azimuth shown by the interaural time and level differences – 
stochastic analytical model 19

Pietro Vischia and Angel Ariel Caputi
Modelling the neurons of the electrosensory lobe in Gymnotus Omarorum with differentiable 
programming 21

Ana Carolina Pereira, Alejo Rodiguez-Cattáneo, Pedro Aguilera and Angel Caputi
The receptive field organization of the electro-sensory lobe neurons of Gymnotus omarorum

23
Tamara Liberman, Martín Bidegain and María Castelló
Psychological and electrophysiological effects of a virtual Mindful Self-Compassion training in 
Uruguayan primary school teachers. 25

10:30 -Day excursion-

THURSDAY, 2nd MARCH
Salón Dorado, Argentino Hotel

Cognitive functions

09:00 Francisco Cervantes Constantino, Rodrigo Caramés Harcevnicow and Ángel Caputi
Decoding the neural representations of multidimensional vocal features 27



09:30 Alessandra Lintas
Brain dynamics of willingness-to-share studied by Event Related Optical Signals (EROS) and 
Event Related Potentials (ERP) 29

10:00 Angel Caputi and Marcela Piffaretti
How does the brain evaluates logical propositions? 31

10:30 -Coffee break-

Neural code

11:00 Elvira Di Nardo, Giuseppe D'Onofrio and Tommaso Martini
On the approximation of the ISI distribution from spike train data using generalized Laguerre 
polynomials 32

11:30 Alessandro Villa
Neural coding across interacting cortical columns 34

12:00 Barry Richmond and Rossella Falcone
How Many Neural Codes Are There? 36

13:00 -Lunch at Argentino Hotel-

Oscillatory processes

14:30 Diego Gallo, Santiago Castro and Pablo Torterolo
Effects of haloperidol on low gamma oscillations of the EEG 38

15:00 Santiago Castro, Joaquin Gonzalez and Pablo Torterolo
Top-down directionality of gamma band (≈40 Hz) functional interactions during wakefulness, 
sleep and drugs that affect consciousness 40

15:30 Joaquin Gonzalez, Pablo Torterolo and Adriano Tort
Mechanisms and functions of respiration-driven gamma oscillations in the piriform cortex

42
16:00 -Coffee break-

Network characterization

16:30 Tatyana Turova Schmeling
Phase Transitions in Randomly Grown Neuronal Networks 43

17:00 Lucas Diaz Celauro, Bautista Arenaza and Inés Samengo
A formal framework to construct simplified models of probabilistic descriptions of 
neuroanatomical data 44

17:30 Eyisto Aguilar, Daniel Martin, Dulara De Zoysa, Zac Bowen, Tomas Grigera, Sergio Cannas, 
Wolfgang Losert and Dante Chialvo
Monitoring the state of a neural network via spatial scaling of correlations 45



20:00 -Farewell dinner-
Kraken Restaurante

FRIDAY, 3rd MARCH

10:00 Business meeting (on-site + virtual)
Casa de la Cultura de Piriápolis

Outreach activities

2 March 2023 11:00-17:00 Exhibit: Biofeedback, Salón Dorado annex room

3 March 2023 11:00-13:00 Family workshop, Casa de la Cultura
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Jacobi processes with jumps as neuronal models

Part 1*

Laura Sacerdote1 and Giuseppe D’Onofrio2

(1) – Dipartimento di Matematica “G. Peano”,

Università di Torino

(2) – Dipartimento di Scienze Matematiche “G.L. Lagrange”

Politecnico di Torino

The number of neuronal models is very high and their complexity ranges from oversimplified
to highly realistic biophysical models ([1]). The leaky integrate and fire concept is considered a
good compromise between tractability and realism. The basic idea of such models goes back to
Lapique ([2]) and all the most used models can be considered variants of the stochastic version
presented in the seminal paper by Stein [3]. There, the membrane potential of a neuron, in
absence of spikes, is described through the process X(t), solution of the stochastic differential
equation

dX(t) = −X(t)

θ
+ αedN

+(t) + αidN
−(t); X(0) = 0, (1)

where θ is the membrane potential time constant (θ = RC, where R is the membrane resis-
tance and C its capacitance), αe and αi are the mean amplitudes of excitatory and inhibitory
postsynaptic potentials as they contribute to the membrane potential at the trigger zone, N+(t)
and N−(t) are two independent Poisson processes with intensities λe and λi, respectively. Then, a
threshold was superimposed to mimic the spiking activity of the neuron. The interspike intervals
are identified with the first-passage time T , of the stochastic process X across a threshold S.

Since for some types of neurons the incoming inputs are frequent and relatively small, a dif-
fusion limit over the discrete process describing the membrane potential evolution was performed
to gain the higher mathematical tractability of the Ornstein-Uhlenbeck process ([4]). Different
variants of the Ornstein-Uhlenbeck model have appeared in the literature, considering different
diffusion processes or different types of thresholds (see [5] for a review).

The two main lacks of the Ornstein-Uhlenbeck model can be listed:

� The pure-diffusion models do not account for the spatial geometry of the neurons and do
not discriminate among different sources of incoming inputs.

� The state space of the Ornstein-Uhlenbeck model is the real line and reversal potentials are
disregarded.

Different variants of the Ornstein-Uhlenbeck model tried to overcome the second problem,
for example switching from the Ornstein-Uhlenbeck model to the Feller one, also known as
Cox–Ingersoll–Ross model ([5]). This choice allowed to account for an upper reversal potential,
without introducing insurmountable mathematical difficulties. Recent papers ([6, 7]) propose the

*Joint work with Pierre Patie, Cornell University.
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use of the Jacobi process to model the membrane potential evolution. The Jacobi process has a
bounded state space, that is the value of the membrane potential is confined below and above by
two fixed values that account for the reversal potentials. Moreover, the change in the membrane
potential determined by an incoming input depends on the distance between its actual state and
the two reversal potentials. As far as the first listed difficulty of the Ornstein Uhlenbeck model
is concerned, some Jump-diffusion models appeared in the literature. In particular, in [9] two
very simple jump-diffusion variants of the Ornstein-Uhlenbeck model were studied by adding to
the process large jumps determining the attainment of the threshold or introducing jumps to-
wards the resting potential. In both the models the jumps times were exponentially distributed.
Furthermore, a multivariate Ornstein-Uhlenbeck process with jumps is proposed in [8] to model
a network. Here, we propose a more complex jump-diffusion model. We start from the Jacobi
diffusion process and we allow inhibitory jumps whose size and frequency are state dependent.
At the price of an heavier mathematical formalism, analytical results are obtained for the first
passage time of this process. These results will be presented in the part 2 talk.

References

[1] I. Segev, Single neurone models: oversimple, complex and reduced. Trends in Neurosciences
15, 414-421, 1992.

[2] L. Lapicque, Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une
polarization. Journal de Physiologie et de Pathologie Generalej, 9, 620-635.(1907).

[3] R.B. Stein, A theoretical analysis of neuronal variability.. Biophys J 5(2):173–94, 1965

[4] L.M. Ricciardi and L. Sacerdote, The Ornstein-Uhlenbeck process as a model for neuronal
activity. Biol. Cybern.,35:1–9, 1979.

[5] L. Sacerdote and M.T. Giraudo, Stochastic Integrate and Fire Models: A Review on Math-
ematical Methods and Their Applications In: Stochastic Biomathematical Models. Lecture
Notes in Mathematics, vol 2058, pages 99–148, Springer, Berlin, 2013.

[6] V. Lanska, P. Lansky and C.E. Smith, Synaptic transmission in a diffusion model for neural
activity. Journal of theoretical biology, 166(4):393–406,1994.

[7] G. D’Onofrio, M. Tamborrino and P. Lansky, The Jacobi diffusion process as a neuronal
model. Chaos,28(10):103119, 2018.

[8] M. Tamborrino, L. Sacerdote and M. Jacobsen, Weak convergence of marked point pro-
cesses generated by crossings of multivariate jump processes. Applications to neural network
modeling Physica D, 288:45–52, 2014.

[9] M.T. Giraudo and L. Sacerdote, Jump-Diffusion processes as models for neuronal activity.
Biosystems, 40(1-2):75–82, 1997.

[10] G. D’Onofrio, P. Patie and L. Sacerdote, Jacobi Processes with jumps as neuronal models:
a first passage time analysis arXiv:2205.08237v1

2

2



Jacobi processes with jumps as neuronal models

Part 2∗

Giuseppe D’Onofrio1 and Laura Sacerdote2

(1) – Dipartimento di Scienze Matematiche “G.L. Lagrange”

Politecnico di Torino

(2) – Dipartimento di Matematica “G. Peano”,

Università di Torino

Among the models used for the description of single neuron’s activity the leaky integrate-and-
fire (LIF) model is still an extremely useful tool, despite its age and simplicity [5, 7]. To overcome
some limits of these neuronal models (see Part 1 for more details), we propose a generalization of
the classical model based on Jacobi processes ([2, 6]) by introducing inhibitory jumps to describe
the activity of a single neuron. The statistical analysis of inter-spike intervals is performed by
studying the first-passage times of the proposed Markovian Jacobi process with jumps through
a constant boundary. In fact, the model describes the time evolution of the voltage across the
membrane of the neuron until it reaches a certain threshold. This event is called action potential
(or spike) and it is believed that the distribution of these spikes encodes the information that
the neurons transfer. It is assumed that the neuron under study is point-like and receives inputs
from the surrounding network of neurons that are summed up (integrate) producing a change
in the voltage value. The term leaky indicates that, in the absence of input, the membrane
potential decays exponentially to its resting value. In accordance with the model, the spikes are
instantaneous events that are generated as soon as the voltage reaches a certain value for the first
time (fire). After the spike, the process is reset instantaneously to the starting position, ready to
start its evolution over again. This renewal condition guarantees that the inter-spike intervals, i.e
the time between two consecutive spikes, are independent and all identically distributed as the
first inter-spike interval described by the random variable first-passage time.

We treat the problem mathematically characterizing its Laplace transform which is expressed
in terms of some generalization of hypergeometric functions that we introduce, and, deduce a
closed-form expression for its expectation, i.e the firing rate. Our approach, which is original in
the context of first passage time problems, relies on intertwining relations between the semigroups
of the classical Jacobi process and its generalization, which have been recently established in [1].
A numerical investigation of the firing rate of the considered neuron is performed for some choices
of the involved parameters and of the jumps distributions.

Among the strengths of the presented model we have that on one hand the good properties
of the classical Jacobi process are preserved: the state space is limited and the frequency and
the amplitude of the jumps are state-dependent. On the other hand it also accounts for inputs
that prevent the diffusion limit due to their amplitudes and/or to their frequencies. Moreover
these downward jumps are able to reduce the firing rate and introduce saturation in the “firing
rate vs input” curve even in the absence of a refractory period. This constitutes a novelty

∗Based on a joint work with Pierre Patie, Cornell University [3].
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compared to other LIF models for which the firing rate increases linearly (and unbounded). The
feature that the model accounts possibly large downward jumps suggests its use for describing
the contribution of a strong internal inhibitory input or the effect of an external factor, like a
pharmacological treatment or the intake of drugs and alcohol that interfere with the standard
activity of the neuron. The tuning of this quantity can also help the investigation of the role of
inhibition in the information transmission. Finally, the high degree of freedom in the choice of the
jump distribution and the relatively easy numerical implementation ([4]) permit the description
of multiple different situations.
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Quickest detection in neuronal modelling

Cristina Zucca1 and Laura Sacerdote1

(1) –Dept. of Mathematics “G. Peano”, University of Torino,

Via Carlo Alberto, 10, 10123 Torino, Italy

One of the most important issue in applications is the problem of detecting abrupt changes in
the behavior of a signal as quickly as possible after they occur. Here we assume that the signal
evolution can be modeled by an Ornstein Uhlenbeck (OU) process with a drift changing from 0
to µ at some random unobservable time θ and we approach the problem by applying the quickest
detection method.

From the observed signal data, we build a process called {Π(t), t ≥ 0}, which represents the
a posteriori probability that the original OU process has changed its initial zero drift by time
t, given the process history up to time t. The optimal stopping time corresponds to the time
at which the process Π(t) first hits the boundary A, connected with the probability of the false
alarm (1 − A). For our analysis, the time when the process Π(t) hits the boundary A indicates
the change in drift of the frequency data to a positive trend.

After describing the method, we apply it to neuronal data. We measure the brain activity
with the local field potential (LFP) and we model it through an Ornstein Uhlenbeck process. We
use the quickest detection method to identify the moments when there is a response to a stimulus.

References

[1] G. Peskir and A. N. Shiryaev. Optimal Stopping and Free-Boundary Problems Birkhäuser,
Basel, 2006.

[2] C. Zucca, P. Tavella and G. Peskir. Detecting atomic clock frequency trends using an optimal
stopping method. Metrologia, 53 (3): S89–S95, 2016.

[3] G. L. Weaver, J.R. Jensen, C. Zucca, P. Tavella, V. Formichella, and G. Peskir. Estimation
of the dynamics of frequency drift in mature ultra-stable oscillators: A study based on the
in-flight performance from New Horizons. Proceedings of the Annual Precise Time and Time
Interval Systems and Applications Meeting, PTTI 2015 : 198–205, 2016.
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Scale-free correlations in the dynamics of a small (N ∼ 10000) cortical network

Sabrina Camargo,1, 2 Daniel A. Martin,1, 2 Eyisto J. Aguilar Trejo,1, 2 Aylen de Florian,1

Maciej A. Nowak,3 Sergio A. Cannas,4, 2 Tomás S. Grigera,5, 6, 2, 7 and Dante R. Chialvo1, 2

1Instituto de Ciencias F́ısicas (ICIFI-CONICET),
Center for Complex Systems and Brain Sciences (CEMSC3),

Escuela de Ciencia y Tecnoloǵıa, Universidad Nacional de Gral. San Mart́ın,
Campus Miguelete, 25 de Mayo y Francia, 1650, San Mart́ın, Buenos Aires, Argentina

2Consejo Nacional de Investigaciones Cient́ıfcas y Tecnológicas (CONICET),
Godoy Cruz 2290, (1425), Buenos Aires, Argentina.

3Mark Kac Center for Complex Systems Research and Institute
for Theoretical Physics, Jagiellonian University, Kraków, Poland

4Facultad de Matemática Astronomı́a F́ısica y Computación, Universidad Nacional de Córdoba,
Instituto de F́ısica Enrique Gaviola (IFEG-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina.

5Instituto de F́ısica de Ĺıquidos y Sistemas Biológicos (IFLySiB),
CONICET and Universidad Nacional de La Plata, Calle 59 n 789, 1900 La Plata, Argentina

6Departamento de F́ısica, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, 1900 La Plata, Argentina

7Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
(Dated: November 15, 2022)

The advent of novel opto-genetics technology allows the recording of brain activity with a reso-
lution never seen before. The characterisation of these very large data sets offers new challenges
as well as unique theory-testing opportunities. Here we discuss whether the spacial and temporal
correlation of the collective activity of thousands of neurons are tangled as predicted by the theory of
critical phenomena. The analysis shows that both, the correlation length ξ and the correlation time
τ scale as predicted as a function of the system size. With some peculiarities that we discuss, the
analysis uncovers new evidence consistent with the view that the large scale brain cortical dynamics
corresponds to critical phenomena.
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Contribution of the D-type K+ current to the operation of
networks of electrically coupled neurons1

Antonella Dapino1, Federico Davoine2 and
Sebastian Curti1

(1) – Laboratorio de Neurofisiología Celular,

Departamento de Fisiología, Facultad de

Medicina, Universidad de la República,

Montevideo 11800, Uruguay.

(2) – Instituto de Ingeniería Eléctrica,

Facultad de Ingeniería, Universidad de la

República, Montevideo 11300, Uruguay.

Relevant brain functions, such as perception, organization of behavior, and cognitive processes, are
the outcome of information processing by neural circuits. Within these circuits, communication
between neurons carried out by electrical synapses has been recognized as a major contributor, even in
the mammalian brain. These intercellular contacts support the direct spread of ionic current from one
neuron to another coupled partner, by means of intercellular channels, typically organized in clusters
known as gap junctions. Thus, electrical synaptic transmission is characteristically fast, bidirectional,
continuous and deterministic in nature. The strength of transmission is determined by both the
junctional resistance and the input resistance of the postsynaptic cell, implying that
electrophysiological properties of coupled neurons are of great relevance. By working in the
mesencephalic trigeminal (MesV) nucleus, a brainstem structure composed of primary afferent
neurons whose cell bodies are electrically coupled mainly in pairs through soma-somatic gap
junctions, we show that these contacts can support relevant functional operations which are critically
shaped by voltage-dependant conductances. Our comparative study between rats and mice revealed
that spike-evoked coupling potentials are far more efficient in recruiting postsynaptic coupled neurons
in rats, thus supporting lateral excitation in these animals. Interestingly, the higher efficacy in
postsynaptic activation does not result from any difference in the coupling strength between these
animals, as its determinants, the junctional resistance and the input resistance, do not show statistical
difference. This suggests that efficacy in postsynaptic recruitment might be determined by the active
electrophysiological properties of coupled neurons. Confirming this hypothesis, MesV neurons from
rats are significantly more excitable than its counterparts from mice, as indicated by its lower
threshold current for activation, more hyperpolarized firing level as well as its higher ability to
generate repetitive discharges. Voltage clamp experiments indicate that, while the persistent Na+

1Agencia Nacional de Investigación e Innovación (ANII), Uruguay (FCE_1_2021_1_166745), Programa de
Desarrollo de las Ciencias Básicas (PEDECIBA) and Comisión Académica de Posgrado of Universidad de la
República.
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current (INap) and the A-type K+ current (IA) do not show any difference between these species, the
D-type K+ (ID) current density in MesV neurons from mice is significantly higher. Our results support
the notion that the ID plays a critical role in determining the waveform of coupling potentials, mainly
due to its fast activation kinetics and its subthreshold voltage range of activation. In summary, network
operations, like lateral excitation, are critically shaped by the intrinsic electrophysiological properties
of coupled neurons, emphasizing the relevance of neuronal excitability for the many functional
operations supported by electrical transmission in mammals.
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A slow gain control mechanism  
Christine. M. Pedroarena1 

(1) – In vitro Laboratory, Systems Neurophysiology 

HIH, CIN, University of Tübingen. 

 

 
Synaptic and intrinsic properties, in particular short-term synaptic plasticity, critically determine how 

and which information is transferred from presynaptic to the postsynaptic neurons, eventually routing 

different aspects of the information encoded in the presynaptic spike trains to different targets. The 

sensitivity to different types of presynaptic signals in different timescales can be enhanced by the 

presence of different types of short-term plasticity in single synapses. In the cerebellum the inhibitory 

Purkinje cells, which carry the output of the cerebellar cortex to deep cerebellar nuclei neurons, are 

spontaneously active, even at rest, and changes in firing activity associated to cerebellar controlled 

behavior are embedded in this background activity. PC background activity has received much less 

attention than the behavior-driven signals, although background rate is highly variable and it has been 

shown to be altered in a number of disease models, including ataxias, autismus and schizophrenia. In 

addition, although persistent or background activity is present during diverse brain processes and 

functions, such as working memory, the relevance for synaptic processing is unclear. 

First, using appropriate stimulation paradigms we identified at Purkinje to excitatory deep cerebellar 

nuclear neurons synapses (PC-DCN) a slow form of short-term depression, in the timescale of tens of 

seconds, that renders these synapses sensitive to the PCs background activity. Experimental and 

modeling results show S-STD is based on a presynaptic mechanism, plausibly a reduction in the number 

of active release sites. In shorter timescales the output of PC-DCN synapses is frequency invariant, due 

to the combined effect of fast short term depression and facilitation, supporting linear rate encoding 

(Turecek et al., 2017). Our modeling and experimental results show how combination of slow and fast 

forms of plasticity at a single synapse support a slow-gain control mechanism that enables faithful linear 

encoding of presynaptic rates in the timescale of common behaviors (e.g., reaches, steps) and gain 

adaptation according to the preceding background activity at longer timescales. I propose that control 

of PC background activity could be a mechanism to allow flexible selection, in the timescale of tens of 

seconds, of the right ensemble of Purkinje cells to control excitatory DCNs. Furthermore, excitatory 

DCNs, but not inhibitory ones, display an intrinsic adaptation to simulated repetitive inhibitory inputs, 

further supporting the idea that the PC background activity is not transferred to the excitatory DCNs, 

but play a role in modulating their responses to more transient PC signals.  
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In 1943, McCulloch and Pitts argued that the discrete, binary activity of neurons connected by
a network of synapses produces events that can be mathematically represented by propositional
logic. Logical expressions and memory functioning can then be reproduced by the behavior
of these kinds of networks, and they are therefore powerful computational devices. Hopfield
later proposed a model where the states of neurons assume continuous values and these types
of interconnected neurons behave as an associative memory, similarly to the network model
composed of McCulloch-Pitts neurons. Artificial neurons with continuous state values more
closely resemble biological neurons. In these models, neurons are characterized by one real state
variable adopting a continuous range of values that determine whether a neuron fires at a certain
time or not. The Hopfield associative memory model has been used to represent an approximation
of human memory functioning, and also as an artificial storage device.

The capacity of human memory to store and retrieve information is central to many mental
processes, be they normal, pathological, conscious or unconscious and these have been widely
studied by the fields of psychiatry, psychoanalysis, neuroscience and computational science. As
examples of the application of associative memory neural networks to the study of mental phe-
nomena, we mention our own efforts in recent years, to develop schematic simulation models
that represent aspects of some mental processes such as neurosis, creativity, and the interaction
between consciousness and unconsciousness, as described by psychoanalysis [2, 3]. Hopfield-like
networks and generalizations have also been used in many artificial intelligence tasks. These con-
siderations have motivated us to investigate basic aspects of artificial associative memory models
[4, 5, 6], which we continue to develop in the present work.

Most fundamental models in theoretical biology exhibit a dissipative dynamics. Important
examples are given by the Lotka-Volterra models in biological population dynamics, the contin-
uous, Hopfield and Cohen-Grossberg neural network models and various mathematical models
for biological, evolutionary processes. In particular, all biologically inspired models supporting
universal computation are nonconservative or, in the case of discrete models, nonreversible.

The continuous models mentioned above, besides being non-conservative, exhibit a modu-
lar structure. They consist of a set of interacting units, each one characterized by an intrinsic
dissipative dynamics. In the Hopfield model, the units are the neurons, each one represented
by a simple, one-dimensional, dissipative dynamics. Real biological neurons are more complex

∗We acknowledge financial support from the Brazilian funding agencies: CNPq, FAPERJ and CAPES.
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than those appearing in the Hopfield model. It is generally believed, however, that the Hopfield
model captures some essential aspects of real biological neural networks. Nervous systems over all
the biological kingdom Animalia consist of neurons exhibiting similar, basic features. Intriguing
theoretical arguments have been advanced suggesting that this remarkable feature of animal life
might hold even within astrobiological scenarios [1]. In spite of the uniformity of biological, neu-
ronal systems, there exist valid motivations to investigate new or alternative biologically-inspired,
mathematical models of computation. First, it is possible that new models may better explore
the richness and complexity of biological computation (even if neurons are everywhere more or
less alike). Second, there are also a variety of theoretical reasons for the exploration of other
models of computation. For instance, the Cohen-Grossberg family of models are closely related
to mathematical models in other areas of biology, and they include, as particular cases, vari-
ous mathematical models in population dynamics. It is very natural to consider extensions of
these models where the basic interacting units are characterized by multi-dimensional, dynam-
ical systems. For instance, effects of time-delay lead to multidimensional dynamics. It is thus
theoretically appealing to formulate a family of neural network models, with multi-dimensional
neurons, encompassing other biological models with nonconservative dynamics, and a modular
structure based on multi-dimensional units.

The aim of the present effort is to explore a general framework for constructing modular,
dynamical systems, akin to associative memory neural networks, that consist of interacting units,
each one described by a multi-dimensional, dissipative, dynamical system. We show that it is
possible to implement an interaction scheme leading to the kind of dynamical behavior that
characterizes an associative memory neural network. The family of generalized networks we
advance here admit, as particular cases, the continuous, neural models of Cohen and Grossberg,
as well as the continuous, Hopfield model.
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Bayes' formula has been used in medical diagnosis for decades. On the other hand, within 

Computational Cognitive Science, Bayesian models have been used as a paradigm of rationality and as 

the ones that best adapt to a large part of cognitive phenomenology. The extent to which humans are 

Bayesian has been widely debated, but there seems to be at least some agreement that, in some way, 

our brains do something close to Bayesian reasoning. However, the neurocomputational mechanisms 

that could underpin this behavior are unknown. The scarce bibliography on the subject has been directed 

fundamentally to single neuron models. In this communication we show that the associative storage of 

the activity of large groups of neurons in an autoassociative memory with overlapping tensor contexts 

gives rise, implicitly, to Bayesian computation. The effect of frequency on statistical learning of 

exemplars of a given class with different sets of (potentially overlapping) contextual items constructs, 

at the same time, both the prior probability distribution and its associated likelihoods for each context. 

Querying the memory with a certain set of contextual items, produces the posterior probabilities of 

classification classes. We discuss the significance of this result and the links to related topics are 

explored.  
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Odour memory has not only been a subject of wide-ranging cognitive and psychological research but it 
has also fascinated poets, novelists because of its associative nature facilitating recreation of significant 
past episodes in our life. At the same time, our ability to recall odours or rather conjuring up olfactory 
sensations themselves seems rather average at least when compared to images or sounds [1]. For writers, 
just mentioned, recalling an odour implies an ability to describe it in words. Similarly, in olfactory 
studies tests for odour identification, beyond just a sense of recognition, typically involve an assessment 
of an individual’s ability to correctly name an odour. Consequently, recalling odour names evoked by 
a perceptual experience constitutes a complex cognitive phenomenon and probes reciprocal interactions 
between olfactory memory and the brain’s neural resources underlying our capacity to use language. 
Despite previous neuroimaging studies on neural correlates of odour identification and a vast body of 
behavioural data, our insights into network-level mechanisms and into the role of synaptic plasticity in 
shaping the associative power of odour memories is limited, particularly in relation to odour names.  
In this work the aim has been to propose a hypothesis about Hebbian-like synaptic basis for the memory 
associations between odour percepts and olfactory word labels. In particular, we have the ambition to 
contribute to the understanding of rather commonly observed behavioural outcomes of odour naming 
tasks such as odour misidentification (providing an incorrect label) and omission of language responses. 
To this end, inspired by our previous work on item-in-context associations [2], we have built a two-
network computational model that accounts for an odour perceptual memory system and a language 
reservoir of odour labels (Fig.1a). The two associative memory networks encode memory patterns, 
which manifest themselves as attractor states, by means of Bayesian-Hebbian learning apparatus 
(Bayesian Confidence Propagating Neural Network, BCPNN [3]). Since the focus in this computational 
study is on capturing behavioural effects and due to a rather intrinsically high level of abstraction in 
describing network interactions between olfactory and language systems, the model is composed of 
abstract computational units describing the population firing rates of superficial layers of cortical 
columns. Both networks are trained using BCPNN rule to form and store distributed long-term memory 
representations of odour percepts and labels, respectively. The recurrent connections between the two 
networks are also incrementally trained to simulate the process of encoding and then recalling the 
associations between odours and their names. To operationalise these perceptual-cognitive processes 
we consider the successful odour identification (recalling a correct label) as the convergence of the 
olfactory language network to the attractor state. This is reflected in the activation of a distributed 
memory representation, corresponding to the memory object - odour label, associated during the 
learning process with the cued olfactory representation in the odour network.  

 

* This work is funded by the Swedish e-Science Research Centre (SeRC). 
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Importantly, to validate our computational hypotheses about synaptic basis for odour misidentification 
and omissions in language response we used a subset of data collected as part of a population-based 
longitudinal Swedish National Study on Aging and Care in Kungsholmen (SNAC-K), where 2569 
subjects underwent an odor naming test [4]. We also conducted a follow-up study, where 37 participants 
were asked to rate the level of similarity between pairs of the odours exploited in the SNAC-K. The 
resulting average perceptual similarity matrix (Fig. 1b) was used as the target for building distributed 
overlapping odour percept representations in the olfactory network space. Language network 
representations of odour labels were derived from the cosine distance matrix obtained for Word2Vec 
embeddings of the original odour names. The SNACK-K olfactory experiments simulated in this work 
consisted mainly of a free recall of odour names as a response to an olfactory stimulus (Fig.1c). 
 

 
Fig.1 Modelling framework: a) schematics of recurrent connectivity in two-network memory model, b) 
odour perception similarity matrix used to construct odour memory representations, c) recall paradigm. 
 

Our simulation results suggest that one of key mechanisms underlying the omission phenomenon can 
be attributed to weakening inter-network associative weights between odour percept and name 
representations. This effect is due to a specific paradigm for learning odour percept-name associations 
where some olfactory stimuli are matched with multiple different names during consecutive training 
trials. This variability of odour labels decontextualises a given percept leaving it without any strong 
label binding. We can observe a similar trend in data, where the variability of odour names freely 
recalled by SNAC-K participants partly explains the omission rates. As for the odour misidentification, 
we are investigating the relative impact of the similarities in the odour percept vs odour name 
representations. Our preliminary data suggest that the representational overlap in the language network 
tends to first cause confusion in odour perception (via reciprocal inter-network connectivity), which 
then may lead to the activation of an incorrect odour name at the cost of the original label.   
In conclusion, we have proposed an attractor memory model consisting of two reciprocally connected 
recurrent networks, long-term olfactory memory and olfactory language memory, to study network and 
synaptic learning mechanisms supporting human odour naming capabilities. The model helps us 
validate computational hypotheses for behaviourally reported examples of cases for odour 
misidentifications and omissions during free recall. Our next step is to systematically evaluate the 
impact of network parameters including the network scale and synaptic time constants among others as 
well as training paradigms in relation to the available data. A particular asset of the current modelling 
framework is an opportunity for testing the emerging model predictions in the experimental setting.  
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Perceptual systems may have evolved to employ specific physical features characteristic or even unique of the 

sensory signal at hand, rather than implement generic mathematical analysis of sensory data. Further, perceptual 

computation may involve neural as well as pre-neuronal elements, the latter based in the physics of the world. In 

the touch system, one such specific, pre-neuronal element is the phenomenon of biomechanical, frictional 

events, which are generated by the relative movement of the integument in touch with object surfaces. These 

short, high amplitude, vibrotactile events are called stick-slip movements (‘slips’). Biomechanical evidence 

from the rodent whisker system showed that the kinematic outlay of slips carries rich information about the 

objects touched. Neurophysiological evidence from recordings of primary afferents and the first synaptic station 

in the brain stem, showed that the early whisker-related tactile system responds in an utmost precise fashion to 

the kinematics of short vibrotactile events, and that there is almost no integration of the vibrotactile signal 

beyond the typical duration of slips. In S1, the neuronal population responds very well to changes in the 

kinematic outline of vibrotactile events, but rather poorly to event rate changes. Matchingly, psychophysical 

results, which we carried out in rodents as well as the fingertip system in humans, indicate that local kinematic 

shape of short events dominates perception while integration of event rate has a comparatively poor perceptual 

effect. In summary, the available data suggests an alternative possibility to think about tactile (neuronal) coding, 

compared to the one the field has followed as its dominant theory for decades: the tactile system may detect 

local (shorter than 10 ms) kinematic patterns in the vibrotactile signal, rather than doing extensive integration 

across time to come up with ‘intensity’ (sum of signal), or ‘frequency (sum of spectral components). 
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Chromatic induction is the effect by which the perceived color of a stimulus is modified due
to the introduction of a chromatic surround [2]. For example, a green stimulus looks yellowish
when surrounded by cyan, and bluish when surrounded by orange. Here we develop a linear
theoretical description of chromatic induction, in which the receptive field has a characteristic
length. This length stems from the anatomical and physiological properties of the underlying
neural network, most likely related to the length of horizontal connections or the degree of con-
vergence in feedforward integration. The theory is most convenently formulated in the so-called
perceptual coordinates, in which the Euclidean distance between colours is proportional to the de-
gree of dis-similarity with which they are perceived [1]. According to the proposed theory, color
discrimination is optimal when the spatial frequency of the chromatic modulation is equal to the
inverse of the characteristic length of the receptive field. We designed and carried out prelimi-
nary experiments on two volunteers and observed the presence of an optimal spatial frequency,
obtaining characteristic distances around 2◦ which, for stimuli at a distance of 1 m, correspond
to objects around 3 cm long.
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Olfactory navigation is a sensorimotor behavior that enables organisms to find food and mates, and to 
avoid predators. While it is a behavior that is often critical for survival, it is also a highly challenging 
one, owing to the turbulent nature of natural plumes. Because of the complex nature of plume statistics, 
olfactory navigation provides a unique window on how the efficient coding principle applies in a 
scenario in which sensation subserves a specific task – locating the source of the odor. Additionally, 
since plume sensation is intrinsically linked to motor activity such as sniffing or antennal movement, 
olfactory navigation is a behavior in which active sensation is expected to play an important role. To 
understand how neural coding strategies may be optimized for olfactory navigation and the 
contributions of active sensation to this task, we performed an information-theoretic analyses of plume 
statistics obtained from planar laser-induced fluorescence measurements of odor concentrations in 
realistic plumes [1]. 
 
Since evolutionarily successful organisms accomplish olfactory navigation by making decisions on a 
moment-by-moment basis, we began by analyzing the information about plume source that can be 
gleaned by encoding a single odor sample. Single samples have only limited information about source 
location, and this limited information can be captured by coarsely resolving odor concentration, e.g., in 
8 to 16 levels [2]. This leads to the question of how these levels should be allocated to the concentration 
range. If the goal of encoding were to reconstruct odor concentration, then the optimal strategy would 
be histogram equalization, i.e.., to divide the odor range into segments of equal probability. However, 
using a novel dynamic programming algorithm to determine the optimal allocation, we showed that 
information about source location is maximized by a different strategy: one that emphasizes resolution 
at higher odor concentrations, even though they occur only rarely. This indicates that the filaments of 
high concentration that occur in turbulent plumes provide disproportionate information about location. 
Interestingly, the theoretically-optimal strategy for encoding the gamut of odor concentrations is closely 
approximated by the Hill nonlinearity of receptor binding – the ubiquitous first stage in olfactory 
transduction -- followed by linear encoding of the fraction of bound receptors [3].  
 
Most animals have paired olfactory sensors, suggesting that joint coding of a pair of samples is 
advantageous. Moreover, even before sensory transduction, an organism can modify the statistics of the 
olfactory environment via motor activity: sniffing in the case of mammals, and antennal movements in 
the case of insects. These forms of active sensation can influence the region of space that is sampled, 
and can result in a local mixing of odor concentrations within the sampled regions. To explore the utility 
of these strategies for olfactory navigation, we extended the information-theoretic analysis to joint 
coding of odor concentration, and modeled the effect of active sensation by Gaussian spatial mixing. 
These analyses were carried out for a range of inter-sensor spacings, mixing radii, and plume 
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characteristics. 
 
We found that sensing plume concentration at two locations provided more information about source 
location than a single sample, and the amount of information typically increased with increasing sensor 
separation and degree of local mixing. Moreover, the analysis showed that the optimal strategy for 
encoding a pair of concentrations depended on the plume characteristics. For more turbulent plumes 
(panel A), the optimal coding strategy focused on the presence of a high concentration at either sensor, 
with little information lost if sensor identity (left vs. right) is ignored. For more diffusive plumes (panel 
B), information about odor source was maximized by joint encoding that focused on small differences 
in concentration at the two sensors, with substantial loss of information if sensor identity is ignored.  
These findings make intuitive sense in terms of plume structure.  In the diffusive plumes, the 
instantaneous plume structure closely resembles the mean structure, and has well-defined spatial 
gradients. So in these plumes, coding small differences in concentration across sensors (i.e. resolving 
spatial gradients) is highly advantageous. In contrast, turbulent plumes have no well-defined spatial 
gradients in the instantaneous plume structure and there are intermittent encounters with odor filaments. 
So in these plumes, it is less advantageous to encode differences (spatial gradients) and more 
advantageous to encode the “hits” of high odor concentration at either sensor. 
 
These computational experiments demonstrate the advantages of binaral (or bi-antennal) sensing 
strategies, and make predictions about active sensing in real-world plumes. 
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Encoding paired samples of odor concentrations to maximize information about source location. A. For 
the unbounded-flow (turbulent) environment, many code word boundaries delineate high odor 
concentrations in left or right sensors, indicating that intermittent high-concentration transients are 
informative. B. For the bounded-flow (diffusive) environment, code word boundaries lie primarily 
along the diagonal, indicating that the side-to-side difference in odor concentration is informative. Axes 
indicate odor concentration in quantiles. 
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Sound enters the cochlea, the vibrations are converted into spike trains and the auditory nerve relays the 

spike trains further to be processed in the peripheral auditory pathway. The first neurons (spiral ganglion 

neurons) and second neurons (neurons of cochlear nuclei) only process mono-aural information. Binaural 

processing of spike trains starts at the third neurons (in the medial nucleus of the trapezoid body and foremost 

the complex of superior olives) of the auditory pathway and takes place at all the subsequent processing 

stages. The spike trains of the left and right sides are compared and processed in the auditory periphery to 

yield sound localization information. Two different sound localization encoding mechanisms are employed 

in the two centers of the superior olives: the lateral superior olive processes the interaural intensity difference 

[2] and the medial superior olive deals with the interaural time difference [4]. For the frequency range 

between the ranges of the two different circuits (two olives) also the used mechanisms overlap.  

The presentation contains a stochastic model of computations with spike trains. Based on previous work, we 

demonstrate that a coincidence detection mechanism has to be implemented somewhere in the neural circuits 

of the auditory periphery, but it is not known to date, whether it is the input, processing, or output part of the 

auditory periphery, there is no definite evidence. Ultimately, the outputs of these computations are 

interpreted by the neural circuit realizing the function of the ideal observer [5]. 

A novel contribution to the sound localization model presented here is in the systematic replacement of the 

numerical components of our previous sound localization descriptions by analytical estimates of individual 

transfer functions of the individual parts of the auditory periphery. 

Our model spike trains are based on electrophysiological recordings. Most of the biophysical constants in 

the model are taken from the literature on mammalian physiology and human psychoacoustics [3]. Some of 

the remaining constants are simple functions fit to match the other parameters in the circuit [1]. The 

inaccuracies in our model are mostly based on difficulties and variations in the electrophysiological 

measurement and variability of individual neural responses 

We arrive at the best estimates for neuronal signaling. We also use a concept of the just noticeable difference 

of values registered by the ideal observer. The stochastic parameters of the model are given by the random 

patterns of neural responses. We describe the spike timing jitter and its role in spike train processing. All sets 

of plausible parameters are subsequently subject to discussion of their effect on the processing precision of 

the circuit. Also, the role of the inherent noise in the neural circuit is discussed. Intervals bounding all the 

parameters and computational implementation of all the mechanisms used are among the main results of this 

study. 

 

Keywords 

binaural hearing; coincidence detection; ergodic hypothesis of equivalent processing in neural circuits; ideal 

observer; interaural time difference; interaural level difference; just noticeable difference; lateral and medial 

superior olive; neuronal arithmetic; psychoacoustics; sound localization; spike trains; spike timing jitter. 
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Nervous systems are complex structures in which one can identify different organization levels, 
from the molecular and subcellular to those describing the whole animal behaviour.  One of the 
challenges of present neuroscience is to understand how different organization levels influence 
each other, to reach a solid understanding on how the brain works. Formal computational 
models are powerful tools to bridge the gaps between levels. Taking into account the 
characteristic features observed in one level they allow to predict the behaviour of the superior 
level or hypothesize sets of combination factors that explain the emergence of such 
characteristic features. Here we present ongoing work aiming to construct a model that bridges 
the gap between the intrinsic properties of the neurons and the circuit behaviour of the 
electrosensory lobe of the weakly electric fish Gymnotus omarorum.  
 
These fish evaluate their environment and communicate using electric images carried by 
electric discharges of a specialized electrogenic organ. These images are originated on the 
heterogeneous distribution of impedance on the fish´s surrounds and are sensed by cutaneous 
electroreceptors,  each of which provides local information to the electrosensory lobe through 
a single primary afferent fiber. The electrosensory lobe contains two independent 
electrosensory paths, called fast and slow somehow analogously to those observed in the 
auditory system.  The fast path is represented by a single type of spherical neurons that receive 
primary afferent calixes making synaptic contact through electrical and chemical synapses and 
project to a mesencephalic nuclei where a Jeffress-like circuit (Jeffress, 1948) compares the 
latency between different incoming inputs. The slow path is represented by a cerebellum-like 
circuit  receiving feed-forward and feed-back connections: such a circuit has two types of output 
neurons with different intrinsic properties and dynamical responsiveness to changes in the 
electrosensory image  (for details on this system see Caputi et al., 2020).  
 
We focussed first on spherical cells, because their round shape and small number of afferent 
contacts simplify the modelling and understanding their role in the circuit. These neurons were 
previously characterized by intracellular recordings in vitro (Nogueira et al., 2006)  and their 
behaviour was studied in freely moving fish  (Castelló et al., 1998). Taking into account the 
previous data (Nogueira et al., 2011, 2014), we used the formalism introduced by Hodgkin and 
Huxley, including  a fast Na+, two K+ currents (high and low threshold) and a mixed cation 
resonant current. We built a differentiable parametric simulation, and found the set of 
parameters values that best reproduce the experimental results obtained in vitro and the 
response of the fast electrosensory path in vivo by means of a gradient-descent-powered 
maximum likelihood fit. 
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Introduction. The concept of receptive field was introduced as a space entity while studying vision
and touch [1, 2]. The study of audition, electro-reception, and chemical senses releases the restriction
of the term “receptive field” to a given region of the sensory mosaic where a given region of space is
mapped. This is evident when considering odor as an almost pure qualitative dimension of olfactory
neurons receptive field [3]. Moreover, while primary auditory afferents encode a particular frequency
band of sound [4], some central neurons encode the direction to the source of sound [4]. Feeding back
the ideas to vision, touch and other senses the concept of receptive field can be generalized as a
multidimensional framework representing spatial and qualitative aspects of the stimulus to which a
sensory neurons respond.
Each central neuron’s receptive field results from the combination of fields of all of the neurons
providing input to it and, the receptive field increases in complexity with the synaptic distance from
the periphery and the intricacy of the synaptic organization of the structures through which the
information is previously processed. Therefore, one can
hypothetize that receptive field of a neuron results not only from its
intrinsic properties but also on its context including the specific
imaging system and the specific neural networks linking the neuron
with the stimulus source and its study is a necessary step for
understanding how a sensory modality encodes reality. Here we
address this problem using as a model of study the first sensory
relay of the homeo-active electro-sensory system exhibited by
weakly electric fish. This nucleus, the electro-sensory lobe, is a
cerebellum-like structure layered which has at least 4 types of
efferent neurons, 5 other types of inter-neurons and two other types
of neurons projecting internally on the same and also on the
contralateral electrosensory lobe besides the afferent fibers. Most cell bodies are grouped in two
layers referred to as granular and pyramidal (G and P in yellow, Fig. 1).
Methods. Using 16 channels multitrodes connected to a multiplexed differential amplifier we
recorded the activity of 137 units in acute decerebrated fish in the absence of objects. After digitizing
and unit discrimination, we used hierarchical cluster analysis of the post-EOD intervals histograms to
classify them into six different categories. Data obtained by observing the distance of the best
recording electrode (62 units) and the effect of metallic and plastic objects (103 units) was
independently evaluated but not considered in cluster analysis. In 50 of the 137 units we recorded the
while moving a vertical cylindrical copper object (9 mm diameter, 40 mm length) parallel to the skin
on rostral to caudal and caudal to rostral directions over the most rostral zone of the fish where more
than 90% of electro-receptors are located. In 10 of these neurons the object was moved at 1 mm/s at
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different distances (1, 4, 8, 15 mm away). In the other 40, the object was moved at 1 mm distance at
different speeds (1, 3, 5, 8, 13 and 21 mm/s).
Results and Discussion. Firstly, we found that units contained in the same cluster shared their
position in the ELL layers and their responsiveness (“on” and “off”) to metal objects indicating that
they probably correspond to different unity types. Secondly, we found that the spike rate depends on

the position of the moving object and shows a) one to three
alternating in direction peaks when plotted as a function of
object position suggesting a center surround structure of the
receptive field ; b) the ratio between the central and surround
peaks, and also the ratio between surround peaks varied
depending on the
distance, the central
peak followed the
curvature of the field
lines when the object
was moved at different
distances, and the

modulation fade away at about 20 mm from the fish, confirming
the importance of the imaging system on the receptive field (Fig.
2). Thirdly, we found a shift in the central effect region and a
reversal in the surround peaks of the spike rate when the object
moves in opposite directions (Fig 3, blue: rostral to caudal, red:
caudal to rostral). Besides these asymmetry in some neurons these profiles were observed in one
moving direction while flat depression were observed when the object moves in the contrary direction,
suggesting a movement detection circuit (compare Fig 4A1 with A2 and B1 with AB2 obtained from

two different
neurons); this might
correspond to an
adaptation process
either at the level of
receptors or at the
ELL circuit [5].
Finally, while some
units were scarcely
depending on speed

(Fig. 4A1), other units decreased their modulation when the same object moves at subsequent trials of
higher speed (Fig. 4B2) suggesting the ability of these neurons to encode the relative speed of the
object with respect to the fish’s body.
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Teaching is one of the most demanding professions. Teachers are expected to have social and emotional skills 

that promote optimal classroom climates and support students, and frequently suffer from work-related stress and 

burnout. Uruguayan teachers have the highest rates of burnout syndrome in Latin America (Silva etal 2015) and 

express the need for more skills aimed at reducing their stress and increasing their well-being while enhancing 

social and emotional competences (INEEd, 2021b). Secular contemplative practices are increasingly implemented 

worldwide due to the reported beneficial effects in clinical and non-clinical populations. Mindfulness, conceived 

by Kabat Zinn (1994) as the awareness that arises through paying attention, on purpose, in the present moment, 

non-judgementally, decreases negative psychological symptoms and emotional reactivity and increases behavioral 

regulation and well-being. In teachers Mindfulness training promotes of pro-social skills, improves emotional 

regulation and well-being, and reduces stress. Neff and Germer and (2013) developed a Mindful Self-Compassion 

(MSC) program oriented towards promoting the capacity of mindfulness as well as self-compassion, but its 

neurobiological and psychological effects haven´t been quantitatively investigated in teachers. 

Considering the antecedents on contemplative practices, the Uruguayan teachers' need of socioemotional skills, 

and the gap of knowledge on the effects of MSC in teachers, in this work we studied in a group of Uruguayan 

female primary schoolteachers the effects of the MSC program. on mindfulness, self-compassion, empathy, well-

being, and stress. 

We used a pre-test post-test quasi-experimental design with an intervention (MSC training) and an active control 

group (KY training). After recruitment, selection, and signature of consent, female teachers were randomly 

assigned to either MSC or KY trainings. The effects of 9-week virtual MSC training (consisting of virtual 

synchronous formal and asynchronous informal activities) were assessed by means of online self-reported online 

psychometric tests focused on mindfulness (FFMQ test), self-compassion(SCS test), empathy (IRI test), global 

stress (PSS) and well-being (WHO-

5). Data were collected at pre, post-

training and follow-up (three months 

later). At the same times, two in-

person empathy for pain 

experimental tasks according to Baez 

et al., (2017; (EPT1) and Jackson et 

al. (2005; EPT2, during which EEG 

and ECG recordings were acquired). 

At post-test time teachers also performed a social stress test (TRIER) during which it ECG recordings were 

acquired. From 48 participants that met the selection criteria, 37 completed the trainings and the online 

psychometric tests at pre-and post-training (MSC: n=19, mean age 38 SD= 6.9 years; KY: n=18, mean age41.2, 

SD= 7,2 years) and 23 at follow-up. Due to the pandemic induced drop out, 28 teachers completed the EPT at pre- 

and post-training.  

At pre-training, MSC and KY groups showed moderate values in all the studied dimensions of mindfulness, self-

compassion, empathy, stress, and well-being, without differences between groups. Virtual training on MSC and 

KY impacted similarly the studied dimensions at post-training. Both MSC (Fig.1) and KY (Fig. 2) increased3 out 

of 5 dimensions of mindfulness; MSC increased 4 and KY 3 out of 6dimensions of self-compassion, increased 

subjective well-being, and reduced stress perception. Only MSC training modified empathy, increased 

perspective-taking, and reduced personal distress. Several findings remained 3 months later. Concerning the 

EPT1, at post-training, MSC did not modify the decreased personal distress for intentional harm. MSC but not 

KY improved cognitive empathy as it increased the accuracy in the intentionality comprehension of intentional 

Figure 1. Experimental design 
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harm. No statistical 

differences in any of the 

dimensions were found at 

pre-, post-training, or 

follow-up between MSC 

and KY. For EPT2, ECG 

data are being analyzed in 

time and frequency domains 

to study several parameters 

of heart rate variability 

(HRV), and EEG heart-

evoked potentials (HEP) are 

being analyzed to evidence 

neural responses to others' 

perceived pain. 
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Figure 2. Effects of Mindful Self-Compassion training (n=19) on psychometric data 

assessed with online versions of a) Five Facet Mindfulness Questionnaire (FFMQ); b) 

Self-Compassion Scale (SCS); c) Interpersonal Reactivity Index (IRI); d) Perceived Stress 

Scale (PSS); and e) Well-Being Index (WHO-5). Significant differences between pre- and 

post-training. Asterisks indicate significant differences (p<0.05).  

Figure 3. Effects of Kundalini Yoga training (n=18) on psychometric data assessed with 

online versions of a) Five Facet Mindfulness Questionnaire (FFMQ); b) Self-

Compassion Scale (SCS); c) Perceived Stress Scale (PSS); and d) Well-Being Index 

(WHO-5). Significant differences between pre- and post-training. Asterisks indicate 

significant differences (p<0.05).  
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Human voice contains rich spectrotemporal information that conveys important speaker identification 
cues to listeners. The acoustic envelope of speech, on the other hand, is a key feature that relays 
information about acoustic energy changes, and reflects no vocal spectral modulations. Slow 
modulations of the envelope can be reliably decoded from auditory cortical networks[1]. Importantly, 
the quality of such ‘envelope tracking’ during speech can be sensitive to cognitive operations such as 
selective attention[2] and speech intelligibility[3]. Recent work has shown evidence of similar 
tracking in the auditory cortex of listeners in response to changes in the fundamental frequency (f0) 
timeseries, arising during vocal production[4]. The f0 broadcasts information from modes of vibration
by the vocal chords while, in parallel, formant modulations are defined by the speaker’s laryngeal 
system configuration. It is currently unclear whether formant information can be also tracked by, and 
reliably decoded from, cortical networks during speech listening. More so, how does any such 
encoding impact listener behavior.

Here, we investigate whether time-varying spectral modulations imposed by the speech production
systems  emerge  in  cortical  activity  as  indexed  by  the  electroencephalogram  (EEG).  Using  the
stimulus reconstruction technique, we decode how well can slow spectral modulations of f0 as well as
formant (F1 to F5) and formant dispersion measures can be reflected in the EEG signals. Participants
(N=73) listen to brief (~9 s) independent solo speech presentations from a variety of speakers while
undergoing EEG. The neural representation of vocal modulations is addressed by measuring how well
are these features decoded from the EEG headset. Our data suggest, similarly to envelope decoding,
above-chance performance of listener decoders in the slow (1-8 Hz) temporal range for the vocal
spectral features. A multidimensional index of performance measures, constructed across all  these
spectral features, serves to characterize individuals’ general ability to track these modulations in solo
speech. In preliminary analyses we find that this multidimensional index predicts listeners’ ability to
track one target speaker when a listener has to select speech in ‘cocktail-party’ settings. We propose
that decoding of these important vocal identity-related modulations from electrophysiological activity
may add to the battery of objective measures of speech listening, in naturalistic conditions.

* Funded by grant FCE_1_2019_1_155889 by Agencia Nacional de Investigación e Innovación to FCC. With 
thanks to T. Sánchez-Costa for data collection.
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According to Game Theory a human subject playing the Ultimatum Game (UG) should
make the most advantageous selection for oneself and offer the least possible amount to the other
player (assumption of selfish rationality) [2]. However, experimental results show non-rationality
of the human behavior and fairness-based (greedy versus generous offers) amplitude differences
in the event-related potentials (ERPs) of Responders during UG [1, 4]. We have replicated these
findings with concurrent recordings of event-related optical signals (EROS) by frequency-domain
functional Near InfraRed Spectroscopy (FD-fNIRS) [3]. Our previous study [5] showed that
the medial frontal negativity (MFN) occurred earlier and with greater amplitude when selfish
participants rejected less favorable endowment shares. In this case, all players received zero
payoffs, which showed that MFN in selfish participants was associated with a spiteful punishment.
At posterior-parietal sites (CPz and Pz), we found that the greater the selfishness, the greater
the amplitude of the late positive component. Base on these results, our working hypothesis is
that frontal regions closer to ACC, dlPFC, and vlPFC (electrode sites Fz, FCz, and Cz) elicit
differences in neural activity occurring approximately 250-550 ms after presentation of the offer.
These differences should be larger for less generous, i.e., more unfair, offers. More importantly,
we expect to see similar differences in both the EEG and EROS signals. Our study allowed
to determine the spatial contributions of frontal brain activity during specific time windows
of the decision-making process and, in particular, that frontal regions closer to dlPFC elicited
increased patterns of activity based on fairness compared to a control site (temporal parietal
junction). These are new evidence of the existence of specific somatic markers associated with the
activation of distinct cerebral circuits by the evaluation of fair and unfair proposals in participants
characterized by different expressions of perceived willingness-to-share.

References

[1] M. Fiori, A. Lintas, S. Mesrobian, and A. E. P. Villa. Effect of Emotion and Personality on
Deviation from Purely Rational Decision-Making. In V. T. Guy, M. Kárný, and D. Wolpert,
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How does the brain evaluates logical propositions?
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Several mathematical models for logical decision-making by humans have been proposed in last 150
years. Models differ in their different algebras, and elementary operators. For example Boolean logic
is based on operating elemental concepts through negation, conjunction and disjunction. Later work
shows that Boolean logical operations can be derived from a single one and that such an elementary
operation can take more than one form. More recently, it was shown the congruence between Boolean
logic and learning ability and the role of negation. The issue of exclusive disjunction as an
elementary operation has been discussed, but it can be shown that this operation could be inconsistent
with reality when evaluating a chain of uneven decisions.
Here we assume that the probability of errors and the time taken by a decision on the truth value of a
proposition based on perceptual information will increase with the underlying complexity of the
decision process. The complexity of an algorithm can be measured as the length of the shortest
possible description of the string in a universal language. However, the description language and in
consequence the formalism, may heavily depend on the physical device that analyses the data and
takes the decision. Within this context emerges the question: What is the formalism used by our brain?
To search for a model that reproduces better the formalism used by the brain, we contrasted the
complexities corresponding to different models on a set of logical decisions with the decision times
and error probabilities obtained when human subjects experimentally decided on the truth of a
proposition on the basis of a visual stimulus.
At present 56 right handed humans older than 18 years, of either sex, participated in decision making
experiments.In all experiments, subjects had to use color proposition under a go (true) /no-go (false)
random presentation protocol. Subjects were seated in a dim-lightened cabin looking at a computer
screen (48 x 26 cm, 1680 x 1050 pixels, 60 Hz, maximum screen illumination) where a colored circle
was displayed on a black background. Stimulus images consisted of three non-contiguous identical
and homogeneously colored (blue, yellow, green, violet, cyan and red) 60º circle sectors centered at
clock dial positions 12, 4 and 8 separated by a randomly pixelated color pattern in which every
mentioned color was equally present. Subjects had to fix their sight on a central spot, to respond as
soon as possible by pressing a mouse button when the colors in homogeneous sectors of the stimulus
image truly verified the proposition (e.g. “a blue sector is present”, “a blue sector is not present”) and
should not respond in the opposite case. Eighteen proposition were evaluated
We found that the decision time and errors increase linearly with the number of affirmed items, with
the number of negated items and also with the number of exclusive disjunctions to be judged. Taking
into account these findings we constructed a model that explain human decision behavior in most of
the tested propositions. A single proposition, (A&~C) | (~A&~B) did not fit the heuristic model.
Different possible explanations are discussed.
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The first-passage-time (FPT) problem arises in many applications in which a stochastic pro-
cess X(t) starting in x0 at time τ evolves in the presence of a threshold S(t) [5]. The math-
ematical study of the FPT problem consists in finding the probability density function (pdf)
g[S(t), t|y, τ ] = d

dtP{T < t} of the random variable T (see [6]), defined by1

T = inf
t≥τ

{X(t) > S(t)}, X(τ) = x0 < S(τ). (1)

There are several strategies to approach this problem, whose effectiveness depends on the formu-
lation of a suitable model for X(t) and on its properties. But when a random sample of FPTs
is analyzed without any prior information on the stochastic dynamics generating the data, the
identification of a model could be difficult to implement. In many applications the only available
data consist in the direct observation of the FPT variable. This can happen, for instance, in
the case of computational neuroscience where, in the popular leaky integrate and fire models, the
stochastic process X(t) describes the time evolution of the voltage across the neuronal membrane
[4]. In this context the FPT data represent the time between two consecutive spikes (ISI) per-
formed by a neuron and their distribution is essential since it is believed to enclose the neural
code. In general, classical tools as histograms or kernel density estimators are the first choice
aiming to postulate a shape of the FPT pdf and then a model.

This contribution introduces a general method which fits into the broad framework of strate-
gies for the approximation of FPT density on a random sample of FPTs through a constant
boundary and, of course, is intended for the cases in which the closed form expression of g is not
available. The proposed approximation is of Laguerre-Gamma polynomial type and belongs to
the class of generalized Fourier series expansions. This proposal have been successfully applied to
Feller processes [1] and Inhomogeneous Geometric Brownian Motion [2] for which no closed form
expressions of the FPT pdf are available. Moreover, to check the feasibility of the method both
in fitting the density and in estimating the parameters, the GBM FPT has been considered in
[3]. All these processes are widely used in the context of the modeling of single neuron or small
networks [4].

Differently from other methods, the approximating function results to be a pdf whatever order
of approximation is reached. Indeed the proposed method iteratively looks for the best degree

1Similarly T = inft≥τ{X(t) < S(t)}, when X(τ) = y > S(τ).

1
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of the approximating polynomial such that the normalization condition is preserved. Numerical
investigations have confirmed that this stopping criterion is accurate, robust and independent on
the shape of the pdf. Moreover, the implemented algorithm relies on simple and new recursion
formulae involving FPT moments or cumulants, depending on the treatability of their expressions.
Note that it is possible to recover cumulants up to order k from moments up to the same order
(and viceversa), using the general partition polynomials [1]. Therefore, from a theoretical point
of view, there is a duality between these two numerical sequences and the choice depends on
which one has a simpler expression. When they are estimated from data, κ-statistics might be
used as free-distribution estimators of cumulants. Indeed they are symmetric functions of the
random sample with minimum variance when compared to all other unbiased estimators.

In the end, this approximation has a twofold advantage. If the FPT moments/cumulants are
not known, the special feature of this approach is the chance to recover an approximation of the
FPT pdf starting from a sample of FPT data like the classical density estimators. If the FPT
moments/ cumulants are known or can be recovered from the Laplace transform of the FPT
random variable T , the method is essentially a way to find an approximated analytical expression
of g. The method turns to be useful also if the model is known but the knowledge of the FPT
moments is limited, as usually happens. In such a case, the approximation might be carried out by
simulating the trajectories of the process through a suitable Monte Carlo method. If, in addition
to data, the FPT moments or cumulants were known analytically, it’s possible to implement a
maximum likelihood procedure to carry out estimates of the parameters involved in the model
since the approximated function is a pdf. In the neuronal modeling context this strategy allows
to obtain expression of the moment or other statistical quantities of the ISIs and enables the
estimation of the parameter of the process (and then of the characteristic of the neuron) starting
from the spike train rather than observing the trajectories as it is commonly done.

To explain the feasibility of the method, results are presented on comparisons between ap-
proximated expressions (obtained analytically or estimated through) related to the GBM FPT
in two instances: known and unknown FPT moments.
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Local field potentials are produced by the synchronized activity of large sets of neurons. This
activity may propagate across large brain areas or even at the entire brain scale in reverberating
circuits [3], in such a way that it contributes to the spatiotemporal dynamics of EEG signals
associated with sensorimotor and cognitive processes [4]. Neural mass models of cortical columns
implemented by stochastic Jansen-Rit equations are used to show that that precise temporal in-
formation [2], carried by deterministic nonlinear attractor mappings, is filtered and transformed
into fluctuations in phase, frequency and amplitude of oscillatory brain activity [5]. The overall
activity of cortical columns acts as a filter to a large extent, but it retains the capacity for gating
a temporally driven input signal and propagate selected temporal features, thus allowing trav-
eling waves to encode temporal information. We extend the study to a scale-free network of 50
cortical columns with bidirectional synaptic connections between interconnected columns. The
analysis of bifrequencies interactions, generated by the periodic drivings of the interacting neural
mass models, by higher-order spectral statistics (in particular the cross-bicoherence and spectral
Granger causality) showed that quadratic phase coupling (QPC) occurred in such nonlinear in-
teractions between cortical columns [1]. We investigated the effect of increasingly larger levels
of background noise fed independently to each column on the detection of QPC. At low levels
of noise, the activity was dominated by the columnar periodic drivings and no QPC could be
detected. At intermediate levels of noise, we observed two distinct domains. In the first domain,
the increase in noise was generally associated to an increase in detection of QPC. The second
domain was highly sensitive to the initial random conditions, in such a way that for some runs
no QPC was detected and some other runs QPC was very well detected. At a higher noise level
the dynamics was dominated by noise and no QPC could be detected. These results suggest the
occurrence of stochastic resonance characterized by optimal levels of noise to generate QPC in the
network of interconnected cortical columns. We discuss the effect of local excitatory/inhibitory
balance on these results [6] and how excitability in cortical columns, controlled by neuromodu-
latory innervation of the cerebral cortex, may contribute to set a fine tuning and gating of the
information propagated across cortical columns.
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How Many Neural Codes Are There?* 
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Ever since the first neuronal recordings by Adrian, the structure of the neural 
code has been seen as a route for learning how the brain processes. It was 
recognized early that the intensity of a response, that is the number of action 
potentials, is a code about the conditions understudy, e.g., Hubel & Wiesel [1]. 
A question that has intrigued investigators has been whether the pattern of 
spikes over time is part of the code. We have found that the pattern of spikes 
over time might play different roles for different neurons. 

Our work is centered on learning how information is converted from 
sensory coding to predicted outcome values; that is, how do we learn which 
stimuli predict a rewarding outcome and which predict an aversive outcome? 
We have found that the neural code is different in different brain regions in a 
well-defined reward prediction behavior. 

We recorded neurons from rhesus monkey ventral-medial-rostral striatum 
and from lateral Prefrontal Cortex (lPFC) while the monkeys were shown visual 
cues indicating the size of an offered reward and the delay to reward delivery in 
successful behavioral trials. The monkeys were free to refuse the offer by 
failing to complete the current trial successfully. Unsurprisingly the monkeys 
were most likely to accept big rewards delivered immediately and least likely to 
accept offers of small, late rewards. 

We found that a well-known but somewhat mysterious set of striatal 
neurons, the so-called Tonically Active Neurons (TANS; also known as the 
Cholinergic Interneurons, CINs), carry information about stimulus associated 
outcome value in a temporal code, where the number of spikes is the same for 
every condition, but the distribution of spikes is governed by a sinusoidal 
envelope [2]. TANs are the only class of neurons that we have identified 
showing this sinusoidal temporal coding. 

We also recorded neurons in the lPFC. Neurons in lPFC project to the 
rostral ventral-medial striatum, thus plausibly providing input to the TANs. 
Each lPFC neuron has a particular temporal pattern; that is, each neuron has its 
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own distribution of spikes over time. The time window where the information is 
found is an essential part of the code. However, despite the patterns of firing 
over time differ from neuron to neuron, the information is conveyed by the 
spike count for each individual neuron; that is, the spike count depends on the 
stimulus being shown. Information is restricted to the spike count modulation in 
an approximately 200 ms window, but it is the timing of this information 
window that is idiosyncratic across neurons.  The population of such neurons 
tiles the entire time period from the cue onset to the imperative signal. In this 
scenario, it is the population that holds the information about the predicted 
outcome for the entire cue period.  

Our results seem to show that different parts of the reward circuit, at 
least, code for stimulus associated predicted outcome with radically different 
spike-based neural codes. Does this mean that each brain region, and perhaps 
each neuronal cell type codes information with its own coding rules? How many 
coding rules are there? 
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Abstract 
During cognitive processes, different cortical areas interact intensely with each other and with other 

subcortical regions such as the thalamus (Singer and Gray, 1995; Gandal et al., 2012). It has been 

postulated that oscillations in the gamma band frequency (30 to 45 Hz) of the electroencephalogram 

(EEG) are the product of these interactions, and therefore they are involved in cognitive functions  

(Bressler et al., 1993; Llinás & Ribary, 1993). Both cognitive processes and the cortical gamma activity, 

as well as its coupling between cortical areas, are radically different between wakefulness and the 

different stages of sleep (Castro et al., 2013, 2014, 2018; Cavelli et al., 2015, 2018). 

Numerous neuronal groups and neurotransmitters are involved in both the regulation of wakefulness, 

as well as in the cognitive processes associated with it (Vanini & Torterolo, 2021). The dopaminergic 

system is one of them. Dopamine agonists have a promoting effect on motivated wakefulness, while 

dopamine antagonists produce the opposite effect (Nishino & Mignot, 1997). However, it is not yet 

known if the dopaminergic system participates in the regulation of the gamma band.  

For this reason, the goal of the project focuses on characterizing the role of the dopaminergic system in 

the modulation of the gamma band EEG frequency range. To carry out this purpose, the effect of high 

doses (4 mg/kg, i/m) of haloperidol (dopamine receptor antagonist) was studied in 4 cats chronically 

implanted for polysomnography. Subsequently, we analyzed the power spectral density and 

intercortical connectivity through the "phase lag index" (PLI) of the gamma band during wakefulness 

and sleep under the control situation and the effects of haloperidol.  

We evidenced a displacement of the maximum value of gamma power towards lower frequency values, 

generating increases in power even in the beta band of EEG frequencies. Similarly, the maximum value 

of gamma band PLI was evidenced in lower frequency values after administration of haloperidol. It is 

concluded that the dopaminergic system has a modulating role of the gamma band of the EEG.  
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Cognitive processes and consciousness depends on large-scale thalamocortical and 

corticocortical recurrent interactions 1–3. It has been postulated that the oscillations in the gamma 

frequency band (30 to 45 Hz) of the electroencephalogram (EEG) are the product of these interactions 

and therefore are involved in cognitive functions 4,5. Oscillations in the gamma frequency band of the 

electroencephalogram are involved in the binding of spatially separated but temporally correlated 

neural events, which results in a unified perceptual experience 2,6,7. 

Top-down processing is how the mind uses our expectations, attentional focus, and other 

cognitive variables to adaptively influence bottom-up sensory processing 3,8. 

In our previous work, utilizing the cat as an animal model, we demonstrated that the coherence 

in the gamma band between intrahemispheric cortical areas is large during wakefulness (W), it 

decreases to moderate values during NREM sleep and reaches minimum values during REM sleep 
7,9. Furthermore, the administration of a subanesthetic dose of ketamine (a model of psychosis), also 

decreases gamma coherence to a similar level than during REM sleep 10. Finally, administration of 

atropine or scopolamine (muscarinic antagonists) produce delta waves and sleep spindles as in NREM 

sleep but the animals remain active. This dissociated state was accompanied by gamma power and 

coherence values similar to W. This high functional connectivity in the gamma band of frequencies 

could explain why the animals remain awake despite the presence of slow waves and spindles in the 

EEG 11.  

The aim of our study is to address the sense of direction of the the gamma band functional 

interactions during W and sleep, as well as following the administration of ketamine (15mg/k) and 

scopolamine (1 mg/k). For this porpoise, five cats were chronically prepared for polysomnographic 

recordings, with electrodes in different cortical areas. Gamma band directionality was studied in the 

abovementioned conditions by two different methods. The first and simplest was quantifying the 

direction of the phase shifts of the amplitude envelopes of filtered gamma oscillations,  The second 

by means of  “Granger causality” 12.  

We found that during W there is a predominant top-down sense of direction of gamma band 

functional interactions. Directionality from dorsolateral Prefrontal cortex (Pfdl) to posterior parietal 

cortex (Pp), from Pfdl to primary cortices such as somato-sensory cortex (S1), primary visual cortex 

(V1) and primary auditory cortex (A1) Predominant directionality was also from Pp to primary 

cortices (S1, A1, V1).  This predominant sense of direction of the gamma flow of information 

disappeared during sleep, as well as under ketamine and scopolamine. 

Our finding highlights the role of top-down processing in gamma frequencies during W when 

the animals are conscious; while, when consciousness is vanished or altered, this directionality is lost. 

Our results strongly suggest that top-down processing in the gamma frequency band is necessary for 

cognitive waking functions. 
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Mechanisms and functions of respiration-driven gamma
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Gamma oscillations are believed to underlie cognitive processes by shaping the formation of
transient neuronal partnerships on a millisecond scale. These oscillations are coupled to the
phase of breathing cycles in several brain areas, possibly reflecting local computations driven
by sensory inputs sampled at each breath. Here, we investigated the mechanisms and
functions of gamma oscillations in the piriform (olfactory) cortex of awake mice to
understand their dependence on breathing and how they relate to local spiking activity.
Mechanistically, we find that respiration drives gamma oscillations in the piriform cortex,
which are inhibitory and result from recurrent connections between local excitatory and
inhibitory neuronal populations. Moreover, respiration-driven inhibitory gamma oscillations
are triggered by the activation of mitral/tufted cells in the olfactory bulb and are abolished
during anesthesia. Functionally, we demonstrate that they locally segregate neuronal
assemblies through a winner-take-all computation leading to sparse odor coding during each
breathing cycle. Our results shed new light on the mechanisms of gamma oscillations,
bridging computation, cognition and physiology.

Keywords: neural oscillations, breathing, neuronal assemblies, sparse coding, optogenetics
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Phase Transitions

in Randomly Grown Neuronal Networks
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We derive equations for the probabilities of connections in a 2- and 3-dim randomly growing
networks taking into account biologically justified assumptions: density of neuronal centers, the
rates of outgrowth of axonal and dendrite arborizations.

The constructed graph is a function of time. Depending on the involved parameters we provide
a phase diagram for the connectivity properties of the graph. In particular, we derive the critical
time when the graph acquires the giant component, i.e., when a fraction of the nodes of the graph
is connected. This time point, which is a function of the involved parameters, reflects a phase
transition in the classical homogeneous random graph process.

Having described the underlying structure we study propagation of activity in the resulted
network of synaptic connections, assuming both inhibitory and excitatory synaptic connections,
and an integrate-and-fire mechanism of impulse propagatoin, close to the bootstrap percolation in
mathematical models. We analyze the impact of the ratio between the amounts of inhibitory and
of excitatory neurons on the formation of stable spatio-temporal patterns of neuronal activity.
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A formal framework to construct simplified models of

probabilistic descriptions of neuroanatomical data∗
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In statistical mechanics, macroscopic descriptions of systems with a large number of particles
can be derived from microscopic descriptions. When reducing the complexity of a model, the
first step is to identify which variables to preserve and which to discard. In 2013, Machta et al
[3] devised a strategy based on preserving the combinations of variables that coincide with those
directions of the parameter space in which the Fisher information has eigenvectors with large
eigenvalues. Here we apply this strategy to reduce the complexity of the probability distribution
of a large number of variables that describe the neuroanatomical properties of the cerebral cortex
of a collection of healthy individuals. In this case, the sampled data are geometric measures
provided by the free software Free Surfer [2] when segmenting and characterizing a collection of
MRI T1 images of 193 healthy volunteers [1], and the parameters of the model are the correlation
coefficients obtained across the population between different anatomical characteristics of the
images. In each of the 62 analysed cortical regions, the probability distribution describing the
population variability of the anatomical properties yields a 3x3 Fisher Information matrix with
one eigenvalue that is at least 30 times larger than the remaining two. The eigenvector associated
with the maximally informative eigenvalue describes the degree up to which the volume of the
cortical region under study can or cannot be equated with the product of the area of the region
and its thickness. This eigenvector can be used to construct a simplified model that reduces the
number of parameters by a factor of 3 and, as confirmed by several validation tests, still provides
a good approximation of the original distribution.
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The dynamical state of the brain has been usually monitored from the Avalanche size dis-
tiribution [1, 2], computed from the total recorded neuronal activity as a function of time, A(t).
Optogenetic techniques allow to record the activity and the position of hundreds to thousands
of neurons. We propose to characterize the network’s dynamical state with a method that takes
profit of this extra information, and computes the state from instantaneous snapshots of the
system state.

We propose a metric, κC , to compute the dynamical state of a neuronal network, based
on the scaling of the correlation length with observation size W. We compare it’s performance
with observables related to avalanche size distribution κS [2] and the autocorrelation AC(1) [3]
of the activity timeseries on a numerical model of spiking neurons. We discuss the benefits and
limitations of each method, and show examples of applications on datasets containing optogenetic
recordings of conscious mice subject to visual stimuli, from Allen Institute [4].

We show the values of AC(1), κS and κC , from the first autorrelation coefficient, avalanche
size distribution, and correlation length scaling, in Fig. 1, for simulations over a neuronal model
[5], this model has a control parameter T than determine the dynamical state of the system. In
this model the dynamical state can be, supercritical, which means a high activity of neurons,
subcritical, low activity and critical. Avalanche analysis expected results: κS > 1 (< 1) for su-
percritical (subcritical) regime, while κS is closest to 1 for critical regime, with control parameter
T = 0.318 (marked with a green dot). For very subcritical values (high T ), κ does not keep on

*Supported by BRAIN initiative Grant U19 NS107464-01.
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Figure 1: Behavior of the different metrics (mean ±SD) as a function of T near the critical
point of the neural model: AC(1) in panel (a) κS in panel (b) and κC in panel (c).

decreasing, probably due to having a short range of s values captured by P (s). The analysis of
characteristic length collapse, κC , shows compatible results, see Fig. 1c. We can see how AC(1)
and our metric has similar results, obtaining values AC(1) = 1 and κC = 1 for critical state.

The metrics explored here yield comparable results, both in the results from numerical simula-
tions and for the mice optogenetic data. AC(1) and κS , being computed from 1D time series, are
subject to external biases and nonstationarities. In contrast, κC , which uses spatial information
can be computed from single snapshots and is more immune to those biases. Close to TC both
AC(1) and κC show smaller errors than κS , but by themselves they cannot discriminate sub from
super-critical behavior. These metrics can be useful to determine the network response to stimuli
dependence on its current dynamical state. For more details about our work please read the
reference: Finite-size correlation behavior near a critical point: A simple metric for monitoring
the state of a neural network, Trejo et al,. Physical Review E (2022).
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Biofeedback-Driven Sound and Image Generation
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BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience,
and technology in an interactive way. Using a headband that captures bioelectric activity of the brain,
the visitors are able to generate sound and images in a sequence loop, making them an integral part of
the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and
complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing
them to continue their engagement with the exhibition beyond the physical space. We used EEG
Biofeedback technique following a closed-loop neuroscience approach[1], capturing EEG data with
Muse S[2] headband, generating in real time an audiovisual pattern stimulation. PureData is used for
sound generation and Generative Adversarial Networks (GANs) [3] for image generation.
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